
Gravity Based Multicatigorical Classification

Barrett Duna

September 14, 2020

1 Introduction

We borrow the concept of gravitational pull from Physics to form a classifier
that classifies based on maximal gravitational pull measured against each class.
We define the mass of each point in the data set as the reciprocal of the squared
distance from the dataset point to our new data point to be classified. Gravi-
tational pull is calculated separately for each class and the class that exerts the
strongest gravitational pull is the prediction.

2 The Gravitational Pull Formula

Suppose we have m classes C1, C2, . . . , Cm and dataset X containing numeric
features with each data point in X corresponding to a class Ci. Then our
formulation of the gravitational pull of class C on vector ~x is...

F (~x,C) =
ΣnC

i=1
1

‖~x−xi
C‖2

‖~x− Ccentroid‖2

where nC is the number of data points in class C, xiC is the ith data point of
class C and Ccentroid is the centroid of class C

3 Background on the Gravitational Pull Formula

The gravitational force pulling two objects together is given by the following
equation...

F = G
m1m2

r2

Here G is the gravitational constant which we drop because each calculation
of the gravitational pull on ~x by class Ci involves the constant so it’s safe to
omit it. The constants m1 and m2 are the masses of the two objects and r is
the distance between the two objects. We see that as mass increases and the
distance between the two objects decreases the gravitational force increases.

1

4 Interpreting our Gravitational Pull Formula

F (~x,C) can be interpreted as an application of the gravitational force equation.
Suppose we are calculating the gravitational pull of class C on ~x.

We have nC data points in class C which spread across the input feature
vector space. Instead of having two objects, we have nC class C data points
representing our first object and one vector ~x representing our second object.

To calculate the mass of class C we sum the masses of each data point in
C. If mC is the total mass of class C and mi

C is the mass of the ith data point,
then the total mass is...

mC = Σnc
i=1m

i
C

In our gravitational pull formula the masses of each data point in each class
change depending on the location of ~x...

mi
C =

1

‖~x− xiC‖2

Thus, as the distance between ~x and xiC grows, the mass of the ith data point
in C decreases leading to a lower gravitational pull holding all else constant.
This means points further away from x are weighted less.

Combining the above two equations we see...

mC = Σnc
i=1m

i
C = Σnc

i=1

1

‖~x− xiC‖2

Reviewing the gravitational force equation and substituting mC for m1,
dropping the constant G and denoting the mass of ~x as mx...

F (~x,C) =
mCmx

r2

We hold the mass of ~x, i.e. mx constant and note that this constant is
multiplied by every calculation of the gravitational pull for each class. Thus,
we can safely set mx = 1 producing...

F (~x,C) =
mC

r2

To calculate r we substituted the distance between ~x and the centroid of
C because the centroid of C is the center of mass of the class when all points
are equally weighted. It is also the point that minimizes the sum of squared
distances between the calculated centroid and all class data points.

Technically, to be true to the gravitational force calculation, we should
weight all points in the class by their mass which isn’t the same for every point.
However, we found better classification performance by simply weighting each
point equally. The equally weighted centroid is a better representation of the
center of the class. The formula we used for calculating the centroid is...

2

Ccentroid =
ΣnC

i=1x
i
C

nC

Combining this we get...

F (~x,C) =
mC

‖~x− Ccentroid‖2

Giving us the original calculation...

F (~x,C) =
ΣnC

i=1
1

‖~x−xi
C‖2

‖~x− Ccentroid‖2

5 Deriving the Class Point Masses

While it’s intuitive to weight each class point by the reciprocal of it’s distance
to the point to be classified, there is mathematical justification for this.

Intuitively, we’d like to minimize the point masses while penalizing decreases
in gravitation pull. Larger point masses lead to stronger gravitational pull which
biases our predictions to the class with the largest point masses. Smaller grav-
itational pull biases our predictions towards classes with stronger gravitational
pull. Thus, we need to optimize an objective function that considers the trade
off between the two competing forces and treats all classes equally.

Consider the objective function J(~mC) where ~mC is the vector of point
weights from class C...

J(~mC) = ΣnC
i=1[

1

2
mi

C

2 − mi
C

‖~x− xiC‖2
]

We will minimize J(~mC). Since each term in the sum only involves a single
point mass, differentiating with respect to mi

C gives...

J(~mC)

dmi
C

=
d

dmi
c

[
1

2
mi

C

2 − mi
C

‖~x− xiC‖2
]

Intuitively, we see minimizing this function optimizes the trade off between
point mass and gravitational pull. The first term minimizes point mass of mi

C

while the second term is the gravitational pull between ~x and xiC which penalizes
decreases in gravitational pull between ~x and the ith point in class C.

Completing the derivative we see...

J(~mC)

dmi
C

= mi
C −

1

‖~x− xiC‖2

Setting the derivative equal to zero produces the desired point mass calcu-
lation...

mi
C =

1

‖~x− xiC‖2

3

Taking the second derivative...

J(~mC)

d2mi
C

= 1 > 0

Thus our function is concave up and we have reached a minimum.

6 Identities and Inequalities of the Gravity Clas-
sifier

We will begin by calculating the expected squared distance E[‖~x− ~xC‖2] between
the point ~x ∈ Rn to be classified which we fix and the random variable xC ∈ Rn

from class C with probability distribution PC .
Note..

‖~x− ~xC‖2 = ‖~x‖2 − 2~x · ~xC + ‖ ~xC‖2

Thus...

E[‖~x− ~xC‖2] = E[‖~x‖2]− 2E[~x · ~xC] + E[‖ ~xC‖2]

Observe...

E[~x · ~xC] = E[Σn
i=1x

i · xiC]

= Σn
i=1E[xi · xiC]

= Σn
i=1xiE[xiC]

= ~x· < E[x1C], ..., E[xnC] >

= ~x · E[~xC]

= ~x · Ccentroid

Since ‖x‖2 is a constant, E[‖x‖2] = ‖x‖2.

Combining all of this, we obtain...

E[‖~x− ~xC‖2] = ‖~x‖2 − 2~x · Ccentroid + E[‖ ~xC‖2]

Continuing...

‖~x− Ccentroid‖2 = ‖~x‖2 − 2~x · Ccentroid + ‖Ccentroid‖2

4

7 Classifying Multivariate Gaussian Clusters

In this section, we look at a special case where we assume a cluster is an n-
dimensional multivariate Gaussian random variable, i.e. XC ∼ N(µ,Σ).

We make use of the following fact about multivariate Gaussians...

E[‖xC‖2] = ‖µ‖2 + tr(Σ)

Note, µ is the expected value of the distribution and hence the centroid.

Thus...

E[‖xC‖2] = ‖Ccentroid‖2 + tr(Σ)

and...

E[‖~x− xC‖2] = ‖x‖2 − 2~x · Ccentroid + ‖Ccentroid‖2 + tr(Σ)

considering...

‖~x− Ccentroid‖2 = ‖~x‖2 − 2~x · Ccentroid + ‖Ccentroid‖2

we see...

E[‖~x− xC‖2] = ‖~x− Ccentroid‖2 + tr(Σ)

F

8 Gravity Classification Boundary Area Plots

5

Figure 1: Non-Linear Decision Areas Produced By Gravity Algorithm

Figure 2: Linear Decision Areas Produced By Gravity Algorithm

6

Figure 3: Non-Linear Decision Areas Produced By Gravity Algorithm on Three
Category Iris Dataset

7

